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Abstract
Due to the growing interest in embeddings of spacetimes in higher dimensional
spaces, we consider a special type of embedding. We prove that Robertson–
Walker spacetimes can be embedded as centroaffine hypersurfaces and
graph hypersurfaces in some affine spaces in such a way that the induced
relative metrics are exactly the Lorentzian metrics on the Robertson–Walker
spacetimes. Such realizations allow us to view Robertson–Walker spacetimes
and their submanifolds as affine submanifolds in a natural way. Consequently,
our realizations make it possible to apply the tools of affine differential geometry
to study Robertson–Walker spacetimes and their submanifolds.

PACS numbers: 02.40.Hw, 04.50.+h
Mathematics Subject Classification: 53A15, 53C50, 83E15

1. Introduction

One very important family of cosmological models in general relativity is the family of
Robertson–Walker spacetimes:

Mn(k, f ) := (
I × S, gk

f

)
, gk

f = −dt2 + f 2(t)gk, (1.1)

equipped with a warped product Lorentzian metric gk
f , where f is a positive function defined on

an open interval I and (S, gk) is a Riemannian (n−1)-manifold of constant curvature k = −1, 0
or −1. The family of Robertson–Walker spacetimes includes the de Sitter, Minkowski and
anti de Sitter spacetimes.

Robertson–Walker spacetimes are considered to be good descriptions of our Universe,
except in the earliest era and the final era. A special case gives the Friedmann cosmological
models (cf [7, 11]).

When n = 2, one may choose S to be the real line; so it gives rise to a Robertson–Walker
spacetime with the Lorentzian metric g = −dt2 + f 2(t) ds2. For n � 3, the standard choices
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for S are the (n − 1)-sphere Sn−1, the Euclidean space E
n−1 and the hyperbolic (n − 1)-space

Hn−1, with curvature +1, 0,−1, respectively.
In recent years, the ideas of Theodor Kaluza and Oskar Klein have received new attention.

Shortly after the publication of the theory of general relativity, Kaluza noted in April 1919 that
when he solved Einstein’s equations for general relativity using five dimensions, Maxwell’s
equations for electromagnetism emerged spontaneously. Kaluza wrote to Albert Einstein who
encouraged him to publish. His theory was published in 1921 in [8] with Einstein’s support. In
1926 Klein [9] suggested that this fifth dimension would be compactified and unobservable on
experimentally accessible energy scales. However, their work was neglected for many years
as attention was directed towards quantum mechanics. The idea that fundamental forces can
be explained by additional dimensions did not re-emerge until string theory was developed.
This idea of compactifying the extra dimension has now dominated the search for a unified
theory and lead to the 11D supergravity theory and more recently the 10D superstring theory
(see [12] for an overview). Recently, this strategy of using higher dimensions to unify different
forces is also an active area of research in particle physics.

Instead of compactifying the extra dimensions, other approaches have also been
developed. For example, one particular variant of the Kaluza–Klein (KK) theory is spacetime-
matter (STM) theory or induced matter theory, chiefly promulgated by Paul Wesson and other
members of the so-called Space-Time-Matter Consortium. In this version of the theory, it is
noted that solutions to the equation RAB = 0 with RAB as the 5D Ricci curvature may be re-
expressed so that in four dimensions, these solutions satisfy Einstein’s equation Gµν = 8πTµν

with the precise form of Tµν following from the Ricci-flat condition on the 5D space. Since the
energy–momentum tensor Tµν is normally understood to be due to concentrations of matter
in 4D space, the above result can be interpreted as saying that 4D matter is induced from
geometry in a Ricci-flat 5D space. In particular, the soliton solutions of RAB = 0 can be
shown to contain the Robertson–Walker metric in both matter-dominated (early universe) and
radiation-dominated (present universe) forms. The general equations can be shown to be
sufficiently consistent with classical tests of general relativity to be acceptable on physical
principles, while still leaving considerable freedom to also provide interesting cosmological
models (see [17, 18]).

There is another approach proposed in 1999 by Lisa Randall and Raman Sundrum.
Randall–Sundrum models imagine our Universe as a 5D anti de Sitter space, and the elementary
particles except for the graviton are localized on a (3 + 1)-D brane or branes. Their models
attempt to address the hierarchy problem between the observed Planck and weak scales by
embedding the 3-brane in a warped 5D metric; the warping of the extra dimension is analogous
to the warping of spacetime in the vicinity of a massive object, such as a black hole (see
[13, 14] for details). The Randall–Sundrum scenario has gained a lot of support recently.

More recently, Stefan Haesen and Leopold Verstraelen investigated in [6] the embedding
problem of spacetimes from the view point of ideal embeddings. The concept of ideal
embeddings was originally introduced in 1990s by the author using author’s δ-invariants (see
[2, 3, 6] for details). Roughly speaking, an ideal embedding is an isometric embedding which
produces the least possible amount of tension from the ambient space at each point on the
submanifold. Among others, Haesen and Verstraelen show in [6] that the 4D de Sitter and
Robertson–Walker spacetimes can be ideally embedded in a 5D flat space.

In this paper, we investigate the embedding problem of spacetimes from the view point
of affine differential geometry. More precisely, by applying an idea from [4] we prove that
Robertson–Walker spacetimes M can be realized as graph hypersurfaces and centroaffine
hypersurfaces in some affine space in such a way that the induced fundamental form (i.e.
the relative metric) is exactly the Lorentzian metric of M. Such realizations allow us to view
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Robertson–Walker spacetimes and their submanifolds in a natural way as affine submanifolds
in an affine space. Consequently, our realizations make it possible to apply the tools of affine
differential geometry to study Robertson–Walker spacetimes and their submanifolds.

2. Affine hypersurfaces

In this section, we recall some well-known facts on affine hypersurfaces from affine differential
geometry (see, for instance, [3, 10, 16] for details).

Let Rm denote the standard real m-dimensional vector space. For an ordered pair (p, q)

of points in Rm, define x = −→pq to be the vector q − p ∈ Rm. The vector space Rm together
with the mapping

Rm × Rm → Rm : (p, q) �→ −→pq

is called an affine m-space.
Let Y be a vector field on Rm and let xt , a � t � b, be an arbitrary smooth curve in Rm.

If we take an affine coordinate system {x1, . . . , xm} and write

Y =
m∑

i=1

Y i ∂

∂xi
and xt = (x1(t), . . . , xm(t)),

then the covariant derivative DtY of Y along the curve xt is given by

DtY =
m∑

i=1

dY i(xi)

dt

∂

∂xi
=

m∑
i,j=1

∂Y i

∂xj

dxj

dt

∂

∂xi
.

Thus, DtY is a generalization of the directional derivative of functions to vector fields. If X
is a tangent vector at a point x0, then DXY is defined by DXY = (DtY )t , where xt is a curve
with the initial point x0 and initial tangent vector X. From this definition, it is clear that the
covariant differentiation D has the following properties:

(1) DX1+X2Y = DX1Y + DX2Y ,
(2) Df XY = f DXY ,
(3) DX(Y1 + Y2) = DXY1 + DXY2,
(4) DX(f Y ) = (Xf )Y + f DXY ,

where f is a smooth function and X, Y,X1, X2, Y1 and Y2 are vector fields.
By definition, an affine connection is a covariant differentiation on a smooth manifold

satisfying the properties (1)–(4) given above.
Consider an affine m-space Rm equipped with the usual affine connection D defined above.

It is easy to verify that the curvature tensor associated with D vanishes identically. So, the
usual affine connection D on Rm is a flat affine connection.

An immersion φ : M → Rn+k of an n-dimensional manifold M into Rn+k is called an
affine immersion if there exists a k-dimensional distribution N on M with Nx ⊂ Tφ(x)Rn+k for
each x ∈ M such that

Tφ(x)Rn+k = φ∗(TxM) + Nx (direct sum), (2.1)

(DXφ∗(Y ))x = (φ∗(∇XY ))x + (α(X, Y ))x, (2.2)

at each point x ∈ M for vector fields X, Y on M, where φ∗ is the differential of φ and
(α(X, Y ))x denotes the Nx-component of (DXφ∗(Y ))x according to the direct sum (2.1). Thus,
(2.2) decomposes DXφ∗(Y ) into the tangential component (φ∗(∇XY ))x and the component
(α(X, Y ))x in Nx according to (2.1).
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By an affine hypersurface M in Rn+1 we mean a codimension-1 affine immersion
φ : M → Rn+1 with a transversal vector field ξ , i.e. ξ is a vector field which is not tangent
to M at each point on M. The formulae of Gauss and Weingarten for an affine hypersurface
φ : M → Rn+1 are given by

DXφ∗(Y ) = φ∗(∇XY ) + h(X, Y )ξ, (2.3)

DXξ = −φ∗(SX) + τ(X)ξ, (2.4)

where X, Y are tangent vector fields on M and φ∗(∇XY ) and −φ∗(SX) are the tangential
components of DXφ∗(Y ) and DXξ , respectively. It is known that ∇ in (2.3) (induced from
D via φ according to (2.3)) is an affine connection, h is a symmetric (0, 2)-tensor, S is a
(1,1)-tensor and τ is a 1-form on M.

The affine connection ∇, the tensor S, the 1-form τ and the symmetric tensor h are called
the induced connection, the affine shape operator, the torsion form and the affine fundamental
form (relative to the transversal vector field ξ ), respectively.

An affine hypersurface φ : M → Rn+1 is called centroaffine if the position vector field
(from the origin o) is always transversal to the tangent hyperplane φ∗(TxM) in Rn+1 for each
x ∈ M . For a centroaffine hypersurface, we always choose the transversal vector field ξ to
be φ (or more precisely, ξ is the position vector field defined by φ(x) = −→ox for x ∈ M). An
affine hypersurface is called a graph hypersurface if the transversal vector field ξ is a constant
vector field.

When the induced fundamental form h is nondegenerate for an affine hypersurface
φ : M → Rn+1, it defines a semi-Riemannian metric on M, called the relative metric (by
‘relative’ we mean ‘relative with respect to the choice of ξ ’). For graph hypersurfaces, the
relative metric h is also known as the Calabi metric.

In affine differential geometry, the transversal vector field ξ of φ : M → Rn+1 is called
a relative normalization (or equi-affine) if τ = 0 holds identically (i.e. DXξ is tangent to M
for each X ∈ T M). The transversal vector field ξ of a centroaffine hypersurface and that of a
graph hypersurface are relative normalizations.

A Lorentzian manifold M is said to be realized as an affine hypersurface if there exists
a codimension-1 affine immersion of M into an affine space such that the induced affine
fundamental form h (i.e. the relative metric) on M is exactly the Lorentzian metric g on M.

3. Robertson–Walker spacetimes as centroaffine hypersurfaces

Let E
n−1, Sn−1 and Hn−1 denote the Euclidean (n − 1)-space, (n − 1)-sphere and hyperbolic

(n − 1)-space of constant sectional curvature 0, 1 and −1, respectively. With respect to a
Euclidean coordinate system {u2, . . . , un} on E

n−1, the metric tensor g0 on E
n−1 is given by

g0 =
n∑

j=2

du2
j . (3.1)

With respect to a spherical coordinate system {u2, . . . , un} on Sn−1, the metric tensor g1 on
Sn−1 is

g1 = du2
2 + cos2 u2 du2

3 + · · · +
n−1∏
j=2

cos2 uj du2
n. (3.2)

Similarly, for Hn−1, the corresponding metric tensor g−1 on Hn−1 is

g−1 = du2
2 + cosh2 u2 du2

3 + · · · +
n−1∏
j=2

cosh2 uj du2
n. (3.3)
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We have the following realization theorem.

Theorem 1. Let f be a positive function defined on an open interval I � 0. We have

(i) every Robertson–Walker spacetime M2(0, f ) can always be realized as centroaffine
hypersurfaces in R3;

(ii) for any integer n � 2, the Robertson–Walker spacetime Mn(1, f ) can always be realized
as centroaffine hypersurfaces in Rn+1;

(iii) if f > 1 holds on I, then the Robertson–Walker spacetime Mn(−1, f ) can be realized as
a centroaffine hypersurface in Rn+1.

Proof. (a) It follows from (3.1) that the metric tensor g of the Robertson–Walker spacetime
M2(0, f ) = I ×f E

1 is given by the warped product Lorentzian metric:

g = −dt2 + f 2(t) du2. (3.4)

Let us consider the embedding φ : M2(0, f ) → R3 defined by

φ =
(

exp

{
u +

∫ t

0

f ′ +
√

f ′2 + f 2 + 1

f
dt

}
,

u exp

{
u +

∫ t

0

f ′ +
√

f ′2 + f 2 + 1

f
dt

}
, exp

{∫ t

0

f (f ′ +
√

f ′2 + f 2 + 1)

f 2 + 1
dt

} )
(3.5)

It is easy to verify that the embedding φ satisfies


φtt = 1 + 2f 2 + f ′2 + ff ′′

f
√

1 + f 2 + f ′2 φt − φ,

φtu = f ′ +
√

1 + f 2 + f ′2

f
φu,

φuu = 2φu − f (1 + f 2)

f ′ +
√

1 + f 2 + f ′2 φt + f 2(t)φ,

(3.6)

where φt = φ∗
(

∂
∂t

)
, φu = φ∗

(
∂
∂u

)
are tangent vector fields of M.

Let us choose the transversal vector field ξ to be φ. Then it follows from equations (2.3)
and (3.6) that the induced affine fundamental form h on the Robertson–Walker spacetime
M2(0, f ) is given by (this is done by comparing the component of ξ from equation (2.3) and
of φ from equation (3.6))

h = −dt2 + f 2(t) du2, (3.7)

which is exactly the Lorentzian metric (3.4) on M2(0, f ). Hence, the embedding defined by
(3.5) is a realization of M2(0, f ) as a centroaffine hypersurface. This proves statement (i) of
the theorem.

(b) Consider the Robertson–Walker spacetime Mn(1, f ) = I ×f Sn−1 equipped with the
warped product Lorentzian metric:

g = −dt2 + f 2(t)

{
du2

2 + cos2 u2 du2
3 + · · · +

n−1∏
j=2

cos2 uj du2
n

}
. (3.8)
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Define η : Mn(1, f ) → Rn+1 by

η(t, u2, . . . , un) =
(

0, . . . , 0, exp

(∫ t

0

f (f ′ +
√

f ′2 + f 2 + 1)

f 2 + 1
dt

))

+ f (t) exp

(∫ t

0

√
f ′2 + f 2 + 1

f
dt

) 
sin u2, . . . , sin un

n−1∏
j=2

cos uj ,

n∏
j=2

cos uj , 0


 .

(3.9)

By a long straightforward computation, we obtain




ηtt = f ′2 + ff ′′ + 2f 2 + 1

f
√

f ′2 + f 2 + 1
ηt − η,

ηtuj
= f ′ +

√
f ′2 + f 2 + 1

f
ηuj

, j = 2, . . . , n,

ηuiuj
= −(tan ui)ηuj

, 2 � i < j � n,

ηuj uj
= f 2

(
j−1∏
i=2

cos2 ui

)
η − f + f 3

f ′ +
√

f ′2 + f 2 + 1

(
j−1∏
i=2

cos2 ui

)
ηt

+
j−1∑
k=2

(
sin(2uk)

2

j−1∏
i=k+1

cos2 ui

)
ηuk

, 2 � j � n.

(3.10)

Comparing equation (2.3) with equation (3.10) in the same way as above shows that, with
ξ = η, the induced affine fundamental form on the Robertson–Walker spacetime Mn(1, f ) is
given by

h = −dt2 + f 2(t)

{
du2

2 + cos2 u2 du2
3 + · · · +

n−1∏
j=2

cos2 uj du2
n

}
, (3.11)

which is exactly the Lorentzian metric (3.8) on Mn(1, f ). Consequently, (3.9) gives a
realization of Mn(1, f ) as a centroaffine hypersurface. This proves statement (ii).

(c) Assume that f > 1 holds on I. Consider the Robertson–Walker spacetime
Mn(−1, f ) = I ×f Hn−1 with the warped product Lorentzian metric:

g = −dt2 + f 2(t)

{
du2

2 + cosh2 u2 du2
3 + · · · +

n−1∏
j=2

cosh2 uj du2
n

}
. (3.12)

Define ψ : Mn(−1, f ) → Rn+1 by

ψ =
(

0, . . . , 0, exp

(∫ t

0

f (f ′ +
√

f ′2 + f 2 − 1)

f 2 − 1
dt

))
+ f (t) exp

(∫ t

0

√
f ′2 + f 2 − 1

f
dt

)

×

sinh u2, . . . , sinh un

n−1∏
j=2

cosh uj ,

n∏
j=2

cosh uj , 0


 . (3.13)
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A long straightforward computation implies that


ψtt = f ′2 + ff ′′ + 2f 2 − 1

f
√

f ′2 + f 2 − 1
ψt − ψ,

ψtuj
= f ′ +

√
f ′2 + f 2 − 1

f
ψuj

, j = 2, . . . , n,

ψuiuj
= (tanh ui)ψuj

, 2 � i < j � n,

ψuj uj
=

(
f 2ψ +

f − f 3

f ′ +
√

f ′2 + f 2 − 1
ψt

)
j−1∏
i=2

cosh2 ui

−
j−1∑
k=2

(
sinh(2uk)

2

j−1∏
i=k+1

cosh2 ui

)
ψuk

, j = 2, . . . , n.

(3.14)

Comparing equation (2.3) with equation (3.14) in a same way as before shows that, with
ξ = ψ , the induced affine fundamental form on Mn(−1, f ) is given by

h = −dt2 + f 2(t)


du2

2 + cosh2 u2 du2
3 + · · · +

n−1∏
j=2

cosh2 uj du2
n


 , (3.15)

which is exactly the Lorentzian metric on Mn(−1, f ). Hence, we have a realization of
the Robertson–Walker spacetime Mn(−1, f ) as a centroaffine hypersurface. This proves
statement (iii). �

4. Robertson–Walker spacetimes as graph hypersurfaces

First, we observe that the Minkowski spacetime E
n
1, n � 2, with the canonical Lorentzian

metric

g = −dt2 +
n∑

j=2

du2
j (4.1)

can be realized as a graph hypersurface in an affine (n + 1)-space Rn+1. This can be easily
done as follows. Consider the embedding φ : E

n
1 → Rn+1 defined by

φ(t, u2, . . . , un) =
(

t, u2, . . . , un,− t2

2
+

1

2

n∑
j=2

u2
j

)
. (4.2)

It is easy to verify that the embedding satisfies

φtt = −ξ, φuj uk
= δjkξ, φtuj

= 0, (4.3)

where ξ is the constant transversal vector field given by ξ = (0, . . . , 0, 1). It follows from
(2.3) and (4.3) that the induced Calabi metric h on the Minkowski spacetime E

n
1 via φ is

exactly the Minkowski metric (4.1) on E
n
1. Therefore, (4.2) gives rise to a realization of E

n
1 in

Rn+1 as a graph hypersurface.
For Robertson–Walker spacetimes, we also have the following realization theorem.

Theorem 2. Let f be a positive function defined on an open interval I. We have

(a) every 2D Robertson–Walker spacetime M2(0, f ) = I ×f R can be realized as a graph
surface in an affine 3-space R3;

(b) for n � 3, we have the following.
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(b.1) The Robertson–Walker spacetime Mn(1, f ) = I ×f Sn−1 can always be realized as a
graph hypersurface in Rn+1;

(b.2) If f has no critical points in I, then the Robertson–Walker spacetime Mn(0, f ) =
I ×f E

n−1 can be realized as a graph hypersurface in Rn+1;

(b.3) If f ′2(t) > 1 holds for each t ∈ I , then the Robertson–Walker spacetime Mn(−1, f ) =
I ×f Hn−1 can be realized as a graph hypersurface in Rn+1.

Proof. Without loss of generality, we may assume that the interval I contains 0.

(A) Consider the 2D Robertson–Walker spacetime equipped with the warped product
Lorentzian metric: g = −dt2 + f 2(t) du2. Let us put

ψ(t, u) =
(

f (t) exp

{∫ t

0

√
f ′2 + 1

f
dt

}
sin u, f (t) exp

{∫ t

0

√
f ′2 + 1

f
dt

}
cos u,

×
∫ t

0
f (f ′ +

√
f ′2 + 1) dt

)
. (4.4)

Then a direct computation shows that ψ satisfies




ψtt = ff ′′ + f ′2 + 1

f
√

f ′2 + 1
ψt − ξ,

ψtu = f ′ +
√

f ′2 + 1

f
ψu,

ψuu = f (f ′ −
√

f ′2 + 1)ψt + f 2ξ

(4.5)

with ξ = (0, 0, 1).

It follows from (2.3) and (4.5) that the induced Calabi metric h is exactly the
Lorentzian metric g = −dt2 + f 2(t) du2. This shows that every 2D Robertson–Walker
spacetime can be realized as a graph surface in R3. This proves statement (a) of the
theorem.

(B) Consider the Robertson–Walker spacetime Mn(1, f ) = I ×f Sn−1 equipped with
Lorentzian metric:

g = −dt2 + f 2(t)

{
du2

2 + cos2 u2 du2
3 + · · · +

n−1∏
j=2

cos2 uj du2
n

}
. (4.6)

Define η : Mn(1, f ) → Rn+1 by

η(t, u2, . . . , un)=
(

0, . . . , 0,

∫ t

0
f (f ′ −

√
f ′2 + 1) dt

)
+f exp

(
−
∫ t

0
{
√

f ′2 + 1/f } dt

)

×

sin u2, sin u3 cos u2, . . . , sin un

n−1∏
j=2

cos uj ,

n∏
j=2

cos uj , 0


 .
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A straightforward long computation yields


ηtt = −1 + ff ′′ + f ′2

f
√

f ′2 + 1
ηt − ξ,

ηtuj
= f ′ −

√
f ′2 + 1

f
ηuj

, j = 2, . . . , n,

ηuiuj
= −(tan ui)ηuj

, 2 � i < j � n,

ηuj uj
=

{
f√

f ′2 + 1 − f ′ ηt + f 2ξ

}
j−1∏
i=2

cos2 ui

+
j−1∑
k=2

(
sin 2uk

2

j−1∏
i=k+1

cos2 ui

)
ηuk

, j = 2, . . . , n

(4.7)

with ξ = (0, . . . , 0, 1). It follows from (2.3) and (4.7) that the induced Calabi metric on
the Robertson–Walker spacetime Mn(1, f ) via η is exactly the Lorentzian metric (4.6) on
Mn(1, f ). Thus, η is a realization of Mn(1, f ). This proves statement (b.1).

Now, assume that the warping function f does not have critical points. Consider the
Robertson–Walker spacetime M(0, f ) = I ×f E

n−1 with the Lorentzian metric:

g = −dt2 + f 2(t)
(
du2

2 + du2
3 + · · · + du2

n

)
. (4.8)

Define φ : M(0, f ) → Rn+1 by

ζ(t, u2, . . . , un) =
(

u2, . . . , un,

n∑
j=2

u2
j +

∫ t

0

dt

f (t)f ′(t)
,

∫ t

0

f (t)

2f ′(t)
dt

)
. (4.9)

Then a straightforward computation yields


ζtt = −f ′2 + ff ′′

ff ′ ζt − ξ,

ζtuj
= ζuiuj

= 0, 2 � i 	= j � n,

ζuj uj
= 2ff ′ζt + f 2ξ, 2 � j � n,

(4.10)

where ξ = (0, . . . , 0, 1) is a constant transversal vector field. It follows from (2.3) and (4.9)
that the induced Calabi metric h via ζ is exactly the Lorentzian metric (4.8) on Mn(0, f ).
Thus, ζ is a realization of Mn(0, f ) as a graph hypersurface. This proves statement (b.2)

Finally, assume that f ′2(t) > 1 holds for each t ∈ I . Consider the Robertson–Walker
spacetime Mn(−1, f ) = I ×f Hn−1 with the Lorentzian metric:

g = −dt2 + f 2(t)

{
du2

2 + cosh2 u2 du2
3 + · · · +

n−1∏
j=2

cosh2 uj du2
n

}
. (4.11)

Define φ : Mn(−1, f ) → Rn+1 by

φ(t, u2, . . . , un) =
(

0, . . . , 0,

∫ t

0
f

(√
f ′2 − 1 − f ′) dt

)
+

f

e
∫ t

0 {
√

f ′2−1/f } dt

×

sinh u2, sinh u3 cosh u2, . . . , sinh un

n−1∏
j=2

cosh uj ,

n∏
j=2

cosh uj , 0


 .
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Then a straightforward long computation yields


φtt = 1 − ff ′′ − f ′2

f
√

f ′2 − 1
φt − ξ,

φtuj
= f ′ −

√
f ′2 − 1

f
φuj

, j = 2, . . . , n,

φuiuj
= (tanh ui)φuj

, 2 � i < j � n,

φuj uj
=

{
f

f ′ −
√

f ′2 − 1
φt + f 2ξ

}
j−1∏
i=2

cosh2 ui

−
j−1∑
k=2

{
sinh 2uk

2

j−1∏
i=k+1

cosh2 ui

}
φuk

, j = 2, . . . , n

(4.12)

with ξ = (0, . . . , 0, 1). It follows from (2.3) and (4.12) that the induced Calabi metric h on
the Robertson–Walker spacetime Mn(−1, f ) via φ is exactly the Lorentzian metric (4.11) on
Mn(−1, f ). Hence, φ gives a realization of Mn(−1, f ) as a graph hypersurface. This proves
statement (b.3). �
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